Distillation for hydraulic fracturing flowback treatment

Distillation for hydraulic fracturing flowback treatment: Hydraulic fracturing (fracking) injects a high-pressure water and sand mixture underground to crack rock. It frees natural gas or oil trapped in rock, most commonly shale. Shale formations are generally 4,000 to 14,000 feet beneath the ground, well below drinking water aquifers that are commonly 250 to 1,100 feet deep. Despite what some think, hydraulic fracturing poses minimal risk to drinking water aquifers because of the distance between them and the activity.

The earliest stage in the excavation process is to drill a horizontal well, which is rotated sideways at the depth of the shale to drill through the stone. The completion phase, in which fracking occurs, follows drilling. During this phase, a steel casing is inserted downhole and cemented into position. A perforating gun is inserted into the drilled well where explosive charges are precisely detonated to add little holes through the casing cement into the rock.

After detonation, a high-pressure frack pump injects water and sand with about 1 percent chemical additives into the well. The chemicals in the mixture often include acids, chloride, polyacrylamide, ethylene glycol, sodium or potassium chlorate, citric acid, isopropanol, and other chemicals. The high-pressure pumps crack the shale rock further, and the sand and chemical additives keep the fissures propped open so that the natural gas or oil can be discharged.

After this, the area that was hydraulically fractured is plugged, and the process continues down the length of the horizontal well. Next, the plugs are drilled away, and hydraulic fractured fluid is extracted and natural gas or oil is brought to the surface for use.

To read the complete article, please visit:

Multipure Commentary:
Multipure Drinking Water Systems have been certified by NSF International to reduce the widest range of contaminants of health concern.