
UAV USER GUIDE 'ERS/

Index

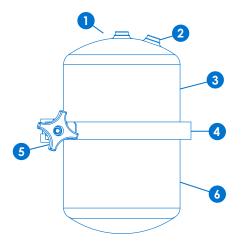
About the Aquaversa	2
Aquaversa Features	2
Before You Begin	3
Aquaversa Drinking Water System	4
Specifications	4
Inspect Your Drinking Water System	5
Install Your System	5
Instal Filter Cartridge	5
Prepare Your System For Use	6
Maintenance	7
 Regarding Filter Capacity 	7
 Removing The Old Filter Cartridge 	7
 Installing The New Filter Cartridge 	8
Flushing / Disinfecting The System	9
Warranty	9
Contaminant Reduction Performance	10
 NSF/ANSI 42 - Aesthetic Effects 	10
 NSF/ANSI 53 - Health Effects 	10
 Standard 401 Incidental Contaminants /Emerging Compounds 	12
Troubleshooting	13
Frequently Asked Questions	14
Aquaversa Accessories	16

Aquaversa User Guide

About the Aquaversa Drinking Water System

- The Multipure Aquaversa Drinking Water System (MP750) is certified to be plumbed into separate tap.
- The Aquaversa is third-party tested and verified by NSF under NSF/ ANSI Standard 42 (Aesthetic Contaminants), Standard 53 (Health Contaminants), and Standard 401 (Emerging Compounds/Incidental Contaminants).
- If installation or operation assistance is required, please contact your Multipure Independent Builder. If the Independent Builder is unavailable, please contact Multipure Customer Care at 702.360.8880.

Aquaversa Features


- Easy and convenient to use; provides delicious, clear, healthier drinking water whenever you need it.
- Better-tasting beverages coffee, tea, juices, and drinks of all kinds.
- Use for food preparation, improving the taste of fruits and vegetables.
- Highest quality water for cooking better pasta, sauces, soups, etc.
- Your pets will love it too!
- Guaranteed quality backed by an outstanding customer satisfaction guarantee and warranty.
- Cost-effective solution to meet your budget and replaces costly bottled water
- Attaches easily to your faucet without tools.
- Reliable protection for all of your family's drinking water needs.

Before You Begin

Multipure Drinking Water Systems (DWS) have been extensively tested and certified by NSF International to provide the highest level of assurance that the device will perform as claimed. Please read this manual before proceeding with the installation and use of your system. Installation, operation, and maintenance requirements are essential to the performance of your system – failure to follow any instructions or operating parameters contained herein may lead to product damage or product failure.

- Replacement filters can be purchased directly from Multipure. For the latest prices, please visit our website at www.multipure.com/store/.
- Actual filter life depends on the amount of water used and the level of impurities in the water. See section Regarding Filter Capacity (Pg 6) for additional details.
- Multipure Drinking Water Systems are not intended for use with microbiologically unsafe water or non-municipally-treated water. Systems certified for cyst reduction may be used on disinfected waters that may contain filterable cysts. See section Frequently Asked Questions (Pg 13) for additional details.
- Do not allow water to freeze in the system. If the system is exposed to freezing temperatures, drain water from the system and remove the filter. Allow the filter to thaw before replacing and reusing.
- Do not allow water to sit in the system for extended periods of time (i.e., 10 days or more) without use. See section Flushing / Disinfecting the System (Pg 8) for additional details.
- To dispose of the used filter, remove it from the housing and place in normal refuse. Filters disposed in a normal landfill will not release any chemical contaminants and may continue to adsorb additional contaminants in the landfill.

Aquaversa Drinking Water System

- 1. Outlet
- 2. Inlet
- 3. Housing Top
- 4. V-Band
- 5. V-Band Knob
- 6. Housing Bottom

Specifications

Model Name: Filter Capacity: Replacement Filter Type: Flow Rate: Pressure Vessel Composition: Rubber Items: Outlet: Inlet: Working Pressure Range:

Operating Temperature Range:

Particle Retention Size: Certified By: Aquaversa (MP750) 750 Gallons CB6 0.75 gpm Stainless Steel Silicone 1/8" NPT 1/8" NPT 30 psi (2.1 kg/cm²) to 100 psi (7.0 kg/cm²) 32° F (0° C) to 100° F (38° C) - for cold water use only 0.5 micron (sub-micron) NSF International

Inspect Your Drinking Water System

Before setting up and connecting your Aquaversa, inspect your DWS to confirm that it has been received in good condition and that all parts are included.

Install Your System

The Aquaversa is certified to be plumbed into separate tap. The Aquaversa can be installed below the sink or on top of the countertop next to the sink. Please refer to the Installation Guide included with your Accessory Kit for step-by-step instructions.

The Aquaversa can be used inline for connection to refrigerators, water coolers, or ice makers, so that all of the water from the cold water outlet or faucet is filtered. Multipure recommends that a professional plumber install the system for inline use.

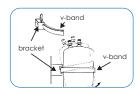
Install Filter Cartridge

- 1. With the Aquaversa housing in an upright position, unscrew the black knob on the Locking V-Band by turning it counter-clockwise.
- 2. With the black knob removed, spread the Locking V-Band apart and let it drop off the bottom of the Aquaversa. Carefully set it aside.
- 3. Lift the top half of the Aquaversa off of the bottom half. Make sure that the black O-ring remains in place on the bottom half of the housing.
- 4. Inspect the black rubber cushion on the inside of the top half of the housing, making sure that it is in position.
- 5. If you have not done so already, remove the filter cartridge from its box, remove the plastic wrapper and instruction wrap from around the new filter cartridge.
- 6. Align the threaded hole of the new filter cartridge onto the inside thread of the top half of the Aquaversa.

- 7. Rotate the cartridge clockwise to tighten (if facing the inside of the top half of the housing). Make sure that the cartridge is threaded properly and straight. DO NOT OVERTIGHTEN.
- 8. Reconnect the top half of the housing (with attached filter cartridge) with the bottom half.
- 9. Replace the Locking V-Band, making sure the screw is in place to connect the band together.
- Screw the black knob onto the Locking V-Band, turning it clockwise to tighten. Make sure that the V-Band is tightly secured evenly around the housing top and bottom.

Prepare Your System for Use

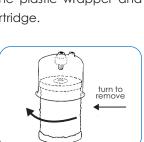
- 1. Using a paper towel or cloth, dry off all connections and the system housing.
- 2. Make sure that all connections are tightly secured.
- 3. Flush the system before use.
 - **a.** Allow water to flow through the DWS for 15 minutes. This purges any air and loose carbon from the system.
 - b. Adjust the water supply so that the water flow to the drinking water faucet does not exceed the flow rate of 0.75 gallons per minute. NOTE: It takes approximately 20 seconds to fill a quart at a flow rate of 0.75 gallons per minute.
- 4. Check all connections to make sure that there are no leaks.
- 5. Congratulations! Your system is now ready for use!

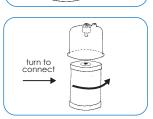

Maintenance

Regarding Filter Capacity

- Exact filter capacity varies in proportion to the amount of water used and the level of impurities in the water being processed. For contaminants reduced through physiochemical adsorption, the filter capacity is 750 gallons. For contaminants reduced through mechanical filtration, capacity claims are inapplicable due to broad variations in the quality and quantity of physical matter in the drinking water. Excessive physical matter will cause the Aquaversa to clog, diminishing flow rate but reducing the contaminants from the resultant water stream.
- 2. For optimum performance and to maintain the lifetime warranty on your system housing, it is essential that the filter be replaced when the first of the following occurs:
 - a. Annually
 - b. When the system is near or has reached its rated capacity
 - c. When the flow rate diminishes
 - d. When the filter becomes saturated with bad tastes and/or odors

Removing the Old Filter Cartridge


- 1. Before opening the Aquaversa housing, place a pan or basin beneath the housing.
- 2. Stop the water supply and relieve the water pressure in the Aquaversa.
- 3. If the system is mounted on a bracket, remove the system from the bracket.
 - a. Tilt the top of the system toward the wall.
 - **b.** Slide the locking V-Band up and into the upper bracket notch.
 - c. Slide the system out of the bracket.
- 4. With the Aquaversa housing in an upright position, unscrew the black knob on the Locking V-Band by turning it counter-clockwise.
- 5. With the black knob removed, spread the Locking V-Band apart and let it drop off the bottom of the Aquaversa. Carefully set it aside.



- Lift the top half of the Aquaversa off of the bottom half. Make sure that the black O-ring remains in place on the bottom half of the housing.
- Remove the old filter cartridge from the top half of the housing by rotating it counterclockwise (if facing the inside of the top half of the housing).
- 8. Dispose of the used filter cartridge in your waste container.
- 9. Rinse out the inside of the system housing, hand washing if necessary.
- Inspect the black rubber cushion on the inside of the top half of the housing, making sure that it is not cracked or worn; Multipure recommends that the cushion be replaced every two to three years.

Installing the New Filter Cartridge

- 1. If you have not done so already, remove the plastic wrapper and instruction wrap from around the new filter cartridge.
- Align the threaded hole of the new filter cartridge onto the inside thread of the top half of the Aquaversa. Rotate the cartridge clockwise to tighten (if facing the inside of the top half of the housing). Make sure that the cartridge is threaded properly and straight. DO NOT OVERTIGHTEN.
- Reconnect the top half of the housing (with attached filter cartridge) with the bottom half. Replace the Locking V-Band, making sure the screw is in place to connect the band together.
- Screw the black knob onto the Locking V-Band, turning it clockwise to tighten.
- 5. Make sure that the V-Band is tightly secured evenly around the housing top and bottom.
- To resume normal use of the Aquaversa, proceed to section Prepare Your System for Use (Pg 5).

Flushing / Disinfecting the System

Multipure recommends that you not allow water to sit in the system for extended periods of time without use. If a system is left unused for more than 10 days, it may need to be flushed / disinfected before resuming normal use.

- 1. Remove the filter cartridge by following the directions in **Removing the** Old Filter Cartridge (Pg 6).
- 2. Add 5 to 7 drops of bleach to the bottom half of the system.
- 3. Reconnect the top half of the housing without a replacement filter cartridge installed.
- 4. Turn on the water supply and allow the system to fill up with the water/ bleach solution.
- 5. Let the water and bleach flush out of the system.
- 6. Open, clean, and rinse out the inside of the system.
- 7. Follow the directions in section Installing the New Filter Cartridge (Pg 7).

Warranty

Multipure 90-Day Guarantee: Multipure is confident in the performance of its Drinking water systems (DWS). If you should find this Drinking water system unsatisfactory, let us know within 90 days of purchase for a prompt exchange or refund.

Multipure Warranty: Multipure warrants to the original retail customer its DWS and components to be free of defects in material and workmanship for use under normal care, and will repair or replace any system at no charge (excluding transportation to Multipure Corporate Headquarters) to the customer during the warranty period. The DWS housing is warranted for a lifetime (provided the filter has been changed at least once per year); all exterior hoses and attachments to the DWS are also warranted for defects in material and workmanship for one (1) year.

Multipure solid Carbon Block Filters are warranted for defects in material and workmanship for use under normal care. The capacity of the filter cartridge depends upon the amount of impurities in the water to be processed.

Except as otherwise expressly provided above, Multipure makes no warranties, express or implied, arising by law or otherwise, including without limitation the implied warranties of merchantability and fitness for a particular purpose, to any person. This limited warranted may not be altered, varied, or extended except by a written instrument executed by Multipure. The remedy of repair or replacement as provided under this limited warranty is exclusive. In no event shall Multipure be liable for any consequential or incidental damages to any person whether occasioned by negligence of the manufacturer, including without limitation damages of loss of use, cost of substitution, property damage, or other monetary loss.

Warranty is valid only if the DWS is operated within conditions listed herein. The warranty begins from the date of purchase.

Contaminant Reduction Performance

The Aquaversa is NSF-certified to reduce a broad array of contaminants of aesthetic and health concern. The following are contaminants treated by the Aquaversa.

NSF/ANSI 42 - Aesthetic Effects

Substance	Percent Reduction**	Influent challenge concentration (mg/L unless specified)	Maximum permissible product water concentration (mg/L unless specified)
CHLORAMINE	97.3%	3.0 +/- 10%	0.5
CHLORINE	97.3%	2.0 ± 10%	≥ 50%
Particulate Class I	98.9%	min. 10,000 particles/mL	≥ 85%

NSF/ANSI 53 - Health Effects

Substance	Percent Reduction**	Influent challenge concentration (mg/L unless specified)	Maximum permissible product water concentration (mg/L unless specified)
ALACHLOR*	>98%	0.0500	0.0010
ASBESTOS	>99%	107 to 108 filbers/L	99%
ATRAZINE*	>97%	0.1000	0.0030
BENZENE*	>99%	0.0810	0.0010
BROMODICHLOROMETHANE (TTHM)*	>99.8%	0.300	0.015
BROMOFORM (TTHM)*	>99.8%	0.300	0.015
CARBOFURAN (Furadan)*	>99%	0.1900	0.0010
CARBON TETRACHLORIDE*	98%	0.0780	0.0018
CHLORDANE	>99.5%	0.040 ± 10%	0.0020
CHLOROBENZENE (Monochlorobenzene)*	>99%	0.0770	0.0010
CHLOROPICRIN*	99%	0.0150	0.0002
CHLOROFORM (TTHM)* (surrogate chemical)	99.7%	-	95%*
Cryptosporidium (CYST)	99.95%	minimum 50,000/L	99.95% reduction requirement
CYST (Giardia; Cryptosporidium; Entamoeba; Toxoplasma)	>99.99%	min. 50,000/L	99.95%
2, 4-D*	98%	0.1100	0.0017
DBCP (see Dibromochloropropane)*	>99%	0.0520	0.0000
1,2-DCA (see 1,2-DICHLOROETHANE)*	95%	0.088	0.0048
1,1-DCE (see 1,1-DICHLOROETHYLENE)*	>99%	0.083	0.001
DIBROMOCHLOROMETHANE (TTHM; Chlorodibromomethane)*	>99.8%	0.300	0.015
o-DICHLOROBENZENE (1,2 Dichlorobenzene)*	>99%	0.0800	0.0010
p-DICHLOROBENZENE (para-Dichlorobenzene)*	>98%	0.0400	0.0010
1,2-DICHLOROETHANE (1,2-DCA)*	95%	0.0880	0.0048
1,1-DICHLOROETHYLENE (1,1-DCE)*	>99%	0.0830	0.0010
CIS-1,2-DICHLOROETHYLENE*	>99%	0.170	0.0005
TRANS-1,2- DICHLOROETHYLENE*	>99%	0.0860	0.0010
1,2-DICHLOROPROPANE (Propylene Dichloride)*	>99%	0.0800	0.0010
CIS-1,3- DICHLOROPROPYLENE*	>99%	0.1700	0.0005
DINOSEB*	99%	0.1700	0.0020

Substance	Percent Reduction**	Influent challenge concentration (mg/L unless specified)	Maximum permissible product water concentration (mg/L unless specified)
EDB (see ETHYLENE DIBROMIDE)*	>99%	0.0440	0.0000
ENDRIN*	99%	0.0530	0.0006
Entamoeba (see CYSTS)	99.95%	minimum 50,000/L	99.95% reduction requirement
ETHYLBENZENE*	>99%	0.0880	0.0010
ETHYLENE DIBROMIDE (EDB)*	>99%	0.044	0.00002
Furadan (see CARBOFURAN)*	>99%	0.19	0.001
Giardia Lamblia (see CYST)	>99.95%	minimum 50,000/L	99.95% reduction requirement
HALOACETONITRILES (HAN)*			
BROMOCHLOROACETONITRILE	98%	0.0220	0.0005
DIBROMOACETONITRILE	98%	0.0240	0.0006
DICHLOROACETONITRILE	98%	0.0096	0.0002
TRICHLOROACETONITRILE	98%	0.0150	0.0003
HALOKETONES (HK):*			
1,1-DICHLORO-2-PROPANONE	99%	0.0072	0.0001
1,1,1-TRICHLORO-2-PROPANONE	96%	0.0082	0.0003
HEPTACHLOR*	>99%	0.0250	0.0000
HEPTACHLOR EPOXIDE*	98%	0.0107	0.0002
HEXACHLOROBUTADIENE (Perchlorobutadiene)*	>98%	0.0440	0.0010
HEXACHLOROCYCLOPENTADIENE*	>99%	0.0600	0.0000
EAD (pH 6.5)	>99.3%	0.15 ± 10%	0.0100
EAD (pH 8.5)	99.3%	0.15 ± 10%	0.0100
INDANE*	>99%	0.0550	0.0000
MERCURY (pH 6.5)	>96.6%	0.006 ± 10%	0.0020
MERCURY (pH 8.5)	96.6%	0.006 ± 10%	0.0020
METHOXYCHLOR*	>99%	0.0500	0.0001
Methylbenzene (see TOLUENE)*	>99%	0.078	0.001
Aonochlorobenzene (see CHLOROBENZENE)*	>99%	0.077	0.001
VTBE (methyl tert-butyl ether)	96.4%	0.015 ± 20%	0.0050
POLYCHLORINATED BIPHENYLS (PCBs , Aroclor 1260)	>99.9% 555	0.01 ± 10%	0.0005
PCE (see TETRACHLOROETHYLENE)*	>99%	0.081	0.001
PENTACHLOROPHENOL*	>99%	0.0960	0.0010
Perchlorobutadiene (see HEXACHLOROBUTADIENE)*	>98%	0.044	0.001
Propylene Dichloride (see 1,2 -DICHLOROPROPANE)*	>99%	0.044	0.001
	>97%	0.1200	0.0040
Silvex (see 2,4,5-TP)*	99%	0.1200	0.0040
STYRENE (Vinylbenzene)*	>99%	0.1500	0.0018
I,1,1-TCA (see 1,1,1 - TRICHLOROETHANE)*	95%	0.084	0.0046
ICE (see TRICHLOROETHYLENE)*	>99%	0.180	0.0048
1,1,2,2- TETRACHLOROETHANE*	>99%	0.0810	0.0010
ITTACHLOROETHANE*	>99%	0.0810	0.0010
	>99%	0.0780	0.0010
OLUENE (Methylbenzene)*			
OXAPHENE Toxoplasma (see CYSTS)	>92.9%	0.015 ± 10% minimum 50,000/L	0.0030 99.95% reduction requirement
RIBROMOACETIC ACID*	>98%	0.0420	0.0010
1,2,4 TRICHLOROBENZENE (Unsymtrichlorobenzene)*	>98%	0.1600	0.0010
1,1,1-TRICHLOROETHANE (1,1,1-TCA)*	95%	0.0840	0.0003
1,1,2-TRICHLOROETHANE (1,1,1-ICA)*	>95%	0.1500	0.0046
RICHLOROEIHANE*	>99%	0.1500	0.0005
RICHLOROEIHYLENE (ICE)* RIHALOMETHANES* (TTHM) (Chloroform; Bromoform; Bromodichloromethane; Dibromochloromethane)	99%	0.1800	0.0010
rurbionolichiorometriane; Dibromochiorometriane)	99%	11 + 1 NITH	O E NITU
	>99%	11 ± 1 NTU 0.160	0.5 NTU 0.0005
Jnsym-Trichlorobenzene (see 1,2,4-TRICHLOROBENZENE)*			
vinylbenzene (see STYRENE)*	>99%	0.150	0.0005

Standard 401 Incidental Contaminants / Emerging Compounds

Substance	Percent Reduction**	Influent challenge concentration (mg/L unless specified)	Maximum permissible product water concentration (mg/L unless specified)
Microplastics	99.8%	min. 10,000 particles/mL	≥ 85%
Group I			
Atenolol	>95.2%	200 ± 20%	0.00003
Carbamazepine	>98.3%	1400 ± 20%	0.0002
DEET	>95.5%	1401 ± 20%	0.0002
Linuron	>96.2%	140 ± 20%	0.00002
Meprobamate	>94.9%	400 ± 20%	0.00006
Metolachlor	>98.5%	1400 ± 20%	0.0002
Trimethoprim	>96.2%	140 ± 20%	0.00002
Group II			
TCEP	>97.9%	5000 ± 20%	0.0007
TCPP	97.8%	5000 ± 20%	0.0007
Group III			
Bisphenol A	99%	2000 ± 20%	0.0003
Estrone	>96.4%	140 ± 20%	0.00002
Ibuprofen	>95.2%	400 ± 20%	0.00006
Naproxen	>96.7%	140 ± 20%	0.00002
Nonyl phenol	>97.5%	1400 ± 20%	0.0002
Phenytoin	>95.2%	200 ± 20%	0.00003

Footnotes

*Chloroform was used as a surrogate for claims of reduction of Volatile Organic Chemicals (VOC). Multipure Systems tested at >99.8% actual reduction of Chloroform. Percent reduction shown herein reflects the allowable claims for VOCs as per tables in the Standard.**Percent reduction reflects actual performance of Multipure product as specifically tested (at 200% of capacity). Percent reduction shown for VOCs reflects the allowable claims for Volatile Organic Chemicals/Compounds as per Tables. Chloroform was used as a surrogate for VOC reduction claims: the Multipure Systems' actual reduction rate of Chloroform was >99.8% as tested (at 200% of capacity). ***NSF Standard 401 has been deemed as "incidental contaminants / emerging compounds". Incidental contaminants are those compounds that have been detected in drinking water suppliers at trace levels. While occurring at only trace levels these compounds can affect the public acceptance/perception of drinking water quality.

- Do not use with water that is microbiologically unsafe or with water of unknown quality without
 adequate disinfection before or after the unit. Systems certified for cyst reduction may be used on
 disinfected waters that may contain filterable cysts.
- Multipure Drinking Water Systems have been certified, as indicated, by NSF International for compliance to NSF/ANSI Standard Nos. 42, 53 & 401.
- The Multipure Drinking Water Systems have been certified by the State of California Department of Public Health for the reduction of specific contaminants listed herein.
- 4. Chloroform was used as a surrogate for claims of reduction of VOCs. Multipure Systems tested at >99.8% actual reduction of Chloroform. Percent reduction shown herein reflects the allowable claims for VOCs as per tables in the Standard.
- Do not use with water that is microbiologically unsafe or of unknown quality without adequate disinfection before or after the system. Systems certified for cyst reduction may be used on disinfected water that may contain filterable cysts.
 Filter life will vary in proportion to the amount of water used and the level of impurities in the water
- 6. Filter life will vary in proportion to the amount of water used and the level of impurities in the water being processed. For optimum performance, it is essential that the filter be replaced on a regularly scheduled basis as follows: (a) annually: (b) when the unit's rated capacity has been reached; (c) the flow rate diminishes; or (d) the filter becomes saturated with bad tastes and odors.
- Multipure Drinking Water System Housings are waranted for a lifetime (provided that filter has been changed at least once per year). All exterior hoses and attachments to the System are warranted for one year. Please see the Owner's Manual for complete product guarantee and warranty information.
- 8. Please see the Owner's Manual for installation instructions and operating procedures.
- 9. In compliance with New York law, it is recommended that before purchasing a water treatment system, NY residents have their water supply tested to determine their actual water treatment needs. Please compare the capabilities of the Multipure unit with your actual water treatment needs.
- 10. While testing was performed under standard laboratory conditions, actual performance may vary.
- 11. The list of substances which the treatment device reduces does not necessarily mean that these substances are present in your tap water.

Troubleshooting

Water flow is frequently interrupted by air

Purge any residual air from the system:

- 1. Turn the system housing upside down.
- 2. Turn on the filtered water faucet (either through the Aquaversa faucet or the diverter valve).
- 3. Allow water to flow for one minute.
- 4. Turn off the filtered water faucet (either through the Aquaversa faucet or the diverter valve).

Odor – rotten eggs, no discoloration on the filter

A rotten egg odor is a sign that H2S (hydrogen sulfide) gas is present in your water source.

If hydrogen sulfide gas is present in your water source, it is recommended that you rotate DWS usage between 2 filter cartridges. When the DWS emits the rotten egg smell, remove the filter and allow it to dry upside down to allow the gas to dissipate (the filter can be reused once dry). Use the second filter in the unit while the first filter is drying.

Odor - rotten eggs, with discoloration on the filter

A rotten egg odor is a sign that H2S (hydrogen sulfide) is present in your water source. Filter discoloration can determine the source:

- orange/brownish colors iron
- blackish colors manganese
- slimy/blotchy colors decaying organisms

When hydrogen sulfide comes from a source that discolors the filter cartridge and creates a strong rotten egg odor, the only recommended solution is to change the filter cartridge.

Color – milky color in the water

Milky color in the water is typically caused by air bubbles in the water. Higher than normal water pressure through the DWS can create these small air bubbles, but they do not affect system performance. Air in the water may also be the result of conditions in your municipal water supply.

For countertop systems, turn on the water and engage the diverter valve while slightly reducing the water flow. Less water pressure through the system can prevent air bubbles from forming.

For below-sink systems, adjust the water pressure at the feedwater adapter below the sink.

Color - black color in the water

Black color in the water is typically caused by residual carbon dust from the filter.

Allow water to run through the DWS for approximately 15 minutes to flush the filter. Residual carbon dust may initially color the water black.

Flow rate – the water flow rate is slow

The filter is designed to restrict its flow rate when clogged with particulates or other solid contaminants.

When the water flow rate slows to the point of inconvenience, or at one year of use, it is time to replace the filter cartridge. If other water sources are on while using the DWS, turn them off to check if they are affecting the flow rate.

Taste/Odor – miscellaneous

The carbon block filter may have become saturated with the tastes and odors treated in your drinking water.

To resolve this, change the filter.

Frequently Asked Questions

Will low pH or acidic water affect the filter?

No. Mineral components can determine the pH of water, and minerals dissolved in solution in the water pass through the system unfiltered.

- pH 7 = neutral
- pH > 7 = alkaline
- pH < 7 = acidic

Does deionized water or soft water have an effect on Multipure water?

No. Because Multipure filters do not treat the natural minerals dissolved in water, the hardness or softness of water has no effect on the resultant filtered Multipure water.

Can the Multipure system be connected to an icemaker?

The Aquaversa can be connected to the sink, refrigerator, water dispenser, or icemaker.

Can the Multipure system be used during an emergency or when the water is turned off?

Yes. During an emergency or when the source water is off, you can hand pump or siphon water through the Multipure system.

CAUTION: The Multipure system is not intended for use where the water is microbiologically unsafe or with water of unknown quality without adequate disinfection before or after the unit. To disinfect questionable source water, add 1/4 tsp. of household bleach per gallon of source water; the Multipure system will remove this solution from the water during the filtering process. Hand pump kits and emergency kits are available from Multipure.

What causes white particles to appear in Multipure water when it is frozen or boiled?

Because the Aquaversa does not reduce any natural minerals present in water, these minerals may solidify when the water is frozen and appear as white flakes or specks when the water is melted or boiled.

Many natural minerals in water are beneficial to your health, and their existence in drinking water (in normal quantities) is not cause for alarm. Minerals can be removed by reverse osmosis technology, which is available through the Multipure AquaRO Drinking Water System.

Why does the Multipure system reduce Volatile Organic Chemicals, but not natural minerals?

Minerals are dissolved in solution and do not have an actual physical size; thus, the minerals pass through the system unfiltered.

Should sediment be removed with a standard filter first?

In areas with excessive sedimentation, pre-filtration can help extend the operational efficiency of the Multipure filter; however, in most areas it is unnecessary.

Multipure Drinking Water Systems utilize a double-filter mechanic. The outer material is a pre-filter that protects the solid carbon block from prematurely clogging with large sediment.

Why is the compressed solid carbon block filter more efficient than (loose) granular activated carbon filters?

Multipure's densely compacted solid carbon block filters force water through microscopic pores of carbon – much smaller than those of granular activated carbon – thus more effectively reducing particulate matter and contaminants that affect the quality, taste, and odor of the water.

What is the difference between a "water softener" and a Multipure Drinking Water System?

Water softeners are not designed to treat drinking water for contaminants; instead, they are designed to adjust the hardness (mineral content) of the water. Multipure systems do not remove dissolved minerals from the water, because natural minerals often found in water are considered beneficial to good health.

Soft water is often desirable for bathing and laundering purposes, and may extend the life of hot water heaters and boilers. However, soft water is not recommended for use on plants or lawns. Multipure recommends that you bypass a water softener when installing your Multipure Drinking Water System.

Can the Multipure Drinking Water System be used with untreated water?

Multipure systems are designed to be used with municipally treated water; they are not intended to be used where the water is microbiologically unsafe or with water of unknown quality without adequate disinfection before or after the unit. Systems certified for cyst reduction may be used on disinfected waters that may contain filterable cysts. To disinfect questionable source water, add 1/4 tsp of household bleach per gallon of source water; the Multipure system will remove this solution from the water during the filtering process.

Aquaversa Accessories

Below-Sink Kit (AQKITB)

This installation kit includes a stand-alone chrome faucet and the necessary hardware to install the system below the sink. The system connects to the cold water line with an included Adapta Valve, and the faucet requires a 0.5" hole available in the countertop or sink for installation.

A below-sink Aquaversa can be removed and converted for countertop use with additional parts.

Countertop Kit (AQKITC)

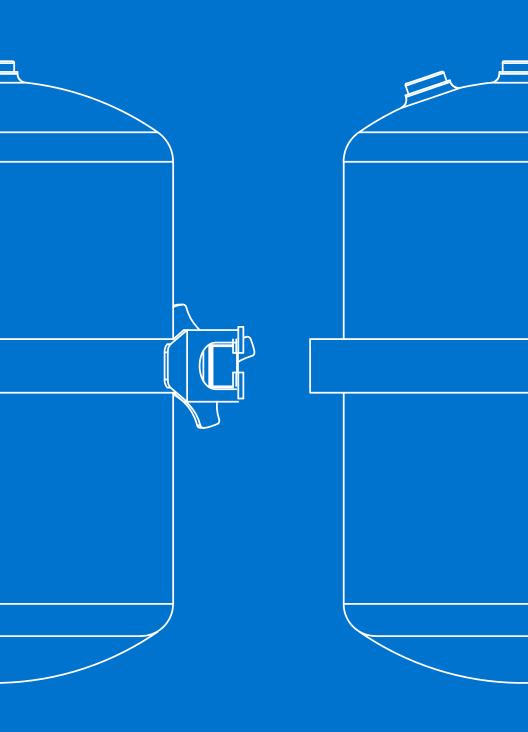
This installation kit includes a dual-hose diverter valve to connect to the sink faucet, providing push-button selection of either filtered or unfiltered water.

A countertop Aquaversa is generally intended for use where below-sink installation restrictions are present (e.g., apartment use or lack of below-sink space), although it can be converted for below sink use with additional parts.

Aquaversa Replacement Filter (CB6)

The Aquaversa replacement filter utilizes Solid Carbon Block technology for optimal performance, and is certified to treat aesthetic contaminants, health contaminants and emerging compounds.

More Information and Products at www.multipure.com


Certification is only on the plumbed-in to separate tap option and the additional parts are not Certified.

If this device is not maintained or operated as specified in this owner's manual, there is a risk of exposure to contaminants. This drinking water filtration system is certified for the reduction of contaminants such as Lead, Mercury, VOCs, Cysts & Toxaphene. For the complete list of contaminants and more information, visit the manufacturer's website at www.multipure.com or the California State Water Resources Control Board at http://www. waterboards.ca.gov/.

The compounds certified under NSF/ANSI 401 have been deemed as incidental contaminants/emerging compounds. Incidental contaminants are those that have been detected in drinking water supplies at trace levels. While occurring at only trace levels, these compounds can affect the public acceptance/perception of drinking water quality.

The system and installation to comply with state and local laws and regulations.

The system is not intended to convert wastewater or raw sewage into drinking water.

For Life. For You.

7251 Cathedral Rock Drive, Las Vegas, NV 89128 702.360.8880 • 800.622.9206 • www.multipure.com

660-60-8034 / 1023